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1 What is data analysis?

Data analysis is the process by which experimental data is used to obtain a valid and quantifiable result.
Part of this analysis must include an estimation of the accuracy of the result, i.e. how certain are you that
you have the correct answer. We refer to this as the uncertainty in the result. Any experimental value that
does not have an associated uncertainty is worthless since it indicates 100% uncertainty in the value. There
are several aspects to data analysis which will be discussed in this document. Let’s start with some general
information and move on to more complex issues.

2 Measurement Uncertainty

Whenever an experiment is performed, every measurement has associated with it some inherent uncer-
tainty. This can be due to the limits of our ability to measure a quantity with a particular device, or in
our fitting of measured values to some model. For example, if I measure the length of something then the
precision of the value depends on the device I use. I certainly can’t expect to measure as precisely the
thickness of a quarter with a meter stick as I could with a vernier caliper or micrometer. Hence, I must
assign with any measurement some reasonable estimate of the uncertainty in the value, i.e. the range of
values in which I would expect the actual value to exist. Hence, if I measure the length L of a rod, I will
assign an uncertainty of σL to this value and say that there is a good probability that the actual length lies
between L− σL and L+ σL. For simplicity we write this as L± σL.

How do you estimate measurement uncertainty? This depends on the device you use. If you have a scale
to which you compare then you can estimate the value based on the relative position between tick marks
on the scale. If a meter stick is being used, where the ticks are separated by 1 millimeter, then you can
estimate the value to the nearest 0.1 mm. The uncertainty in this value can be reasonably assumed to be
±0.3 mm. A similar rule of thumb can be used for many other scales. An exception is any device with a
vernier scale where you would assume ±0.5 of the lowest digit measured, e.g. 21.30± 0.05 mm with the last
digit read from the scale was the 3. For digital scales, assume ±0.5 of the last digit. Alternatively, you could
make multiple measurements and use statistical analysis as described later. Remember, trailing zeros are
significant.

3 Significant Figures

You have all dealt with significant figures to some extent in the past, but now I will introduce a proper
prescription for how to limit the number of significant figures in a result. The basic concept of how to
determine the number of significant figures is based on the precision of the number and not on the number
of significant figures in the original numbers which were combined. We will use the following basic rules:

1. A value cannot have more significant figures than are allowed by the uncertainty in the value. E.g., if
the averaged measured value is 1.2345 by the readings (each reading being made to this accuracy), but
the uncertainty in the reading based on statistical analysis is 0.003, then the value must be limited in
significant figures to 1.235.
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2. We generally specify uncertainties in terms of the uncertainty in the last significant figure. For the
previous example, the uncertainty is 3 in the last significant figure. When uncertainties are propagated,
it will be necessary to round off the numbers to limit significant figures to meaningful numbers. For
example, if the uncertainty is 100 in the last significant figure there can be very little meaning to the last
digit, so this digit in both the number and the uncertainty should be dropped (i.e., 1.23456± 0.00100
should become 1.2346± 0.0010). The question then arises as to when to round up the numbers. As a
rule of thumb, we will choose to keep significant figures until the uncertainty in the last digit is 25. If
it exceeds 25, then the uncertainty will be rounded and the last digit dropped.

These rules are not set in stone, but are a good guideline that you should follow. (These are not even
the rules as given in any particular book, but I feel they are closer to the accepted practice for real scientific
publications.) One last point before leaving this topic is to state that as you propagate uncertainties in
an analysis, you should retain all the digits until the final answer is obtained. Only then should you begin
rounding off the numbers. In this way you limit the possibility of overstating or understating your uncertainty
in the final result due to how the uncertainties were rounded during the analysis.

4 Propagation of Uncertainty

In general, in doing experiments you will not measure a single quantity in order to have your final result.
Instead, you will measure several quantities which need to be combined in order to obtain your final value. For
example, to find the area of a rectangle, you would measure length and width, and multiply these together.
Since both measurements have uncertainties associated with them, how do you find the uncertainty in the
area. This process is often termed error analysis, but I don’t like the use of the word “error” since there is
no “error” in the measurement, just uncertainty. I will present the boring theory first, then give you some
useful formulas.

Consider the case of a quantity x which will be determined by the measurement of a set of variables
{u, v, . . .}, where each measured value has some associated uncertainty (u ± σu, v ± σv, etc.). We won’t
specify the way in which these individual uncertainties were determined since they can be statistical or
instrumental. We write x in terms of a function of our measured variables and various constant factors

x = f(u, v, . . .). (1)

Now we will assume that a reasonable estimate for the true value of x comes from using the mean (“best”)
values for each of the measured quantities—i.e.,

x̄ = f(ū, v̄, . . .). (2)

The uncertainty in x must somehow be related to the uncertainties in the variables {u, v, . . .}. This relation-
ship is done by looking at how the final answer changes as each variable is changed. In simplest terms this
is related to the slope of the function as a variable changes. Doing a little math this becomes
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Calculus is not a prerequisite for General Physics, so you are not expected to fully grasp this equation. Suffice
it to say that the ∂f/∂u and ∂f/∂v terms are measures of how the function f varies with small changes
in u and v, respectively. The first two terms are related to the variance or uncertainties in the individual
measurements {σu, σv, . . .} while the last term is related to the covariances σ2

uv of the data set, i.e. how the
variables change with each other. Typically your experiment will involve only independent variables since
each is measured independently of the others. By independent, we do not mean unrelated since the final
result depends on both. Instead, we would consider the covariance only in cases where the two variables
are measured simultaneously. For example, if we are finding a resistance by measuring current and voltage
simultaneously, then we do need to worry about covariance. In cases with covariance, we will be making
multiple measurements and doing statistical analysis so that

σ2
uv ≡
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N∑
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[(ui − ū)(vi − v̄)], (4)
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which can be negative. If the two variables are actually independent then the covariance should be small.

4.1 Examples

In this section we will consider various cases where we assume a set of dependent variables {u, v} which
may have covariance and are combined with fixed constants {a, b} which have no uncertainty. We will use
all terms of Eqn. 3. If your data set does not contain covariance, then just use σ2

uv = 0.

1. Adding/subtracting a constant. The uncertainty does not change, but the percentage uncertainty
will.

x = u± a, σx = σu,
σx
x

=
σu
u± a

(5)

2. Adding/subtracting variables. You will note that the percentage uncertainty in subtracting large
numbers can become quite large, possibly exceeding 100%. It is a good practice to avoid subtracting
large numbers.
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3. Multiplying two numbers. Notice that it becomes easier to work with the percentage uncertainties.
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4. Dividing two numbers. Notice the similarity to multiplication. Also notice that due to the negative
sign that the covariance term can lead to a smaller uncertainty in the final result. This is actually true
in any situation since the covariance can be negative.
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5. Variable raised to a power.

x = aub, σx = abub−1σu,
σx
x

= b
σu
u

(9)

6. Exponential Functions.

x = aebu, σx = abebuσu,
σx
x

= bσu (10)

7. Constant raised to the power of u.

x = abu, σx = b ln(a)abuσu,
σx
x

= b ln(a)σu (11)

8. Logarithmic Functions. This is a rare case where the fractional error form is more complex.

x = a ln(bu), σx =
abσu
u

,
σx
x

=
bσu

u ln(bu)
(12)

9. Trigonometric Function. The angle used in the trigonometric function has a major effect on the
resulting uncertainty. Please note that the value of bu in these formulas as well as σu must be in radians.

x = a cos(bu), σx = ab sin(bu)σu,
σx
x

= b tan(bu)σu (13)

x = a sin(bu), σx = ab cos(bu)σu,
σx
x

= b cot(bu)σu (14)
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5 Statistical Analysis
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Figure 1: Three normal (or Gaus-
sian) distributions each with a mean
of zero but with differing values of
σ, the standard deviation. Larger
standard deviations indicate a greater
spread in the distribution.

When measurements are made, the result may vary from one
measurement to the next due to reading uncertainty in the measure-
ment device or a variation in the system at the level of the precision
of the measuring device. If we do not observe some variation in the
results, it just means we are not using a device with a high enough
level of precision for the measurement. Since the measurements are
not always the same, there must be an associated uncertainty with
this measurement. How do we estimate this uncertainty? As an
example, let’s consider the measurement of some quantity x, where
the individual measurements of x are represented by xi. We can
bin our measured values (xi) and plot the number of measurements
within each bin as a histogram, then we will see that the results
clump about some average value which we must assume is the cor-
rect value. (When I say “bin” I mean the following. We define
values of xj which are separated by 2δx. If a value of xi lies between
xj−δx to xj+δx, then we add one count to the xj bin. The number
of counts in each bin are what will be plotted.) The spread of the
distribution about the average must somehow reflect the uncertainty in the measurements. If we take a very
large number of measurements and let the bin width (δx) become very small, the distribution will become
a smooth function, the parent or limiting distribution p(x). Most measurements will form a symmetrical
distribution which can be well represented by a normal (Gaussian) distribution (see Figure 1). There is
no reason to get into all the details here, just suffice it to say that by using statistical analysis we can
describe the center and width of the distribution from the measured values. To do this, I will consider how
to determine the best value and its associated uncertainty for a set of N values given by {xi}N .

5.1 Mean Value

The mean (or average) of {xi}N is what we assume to be the best value. The mean value is defined as

x̄ =
1

N

N∑
i=1

xi. (15)

5.2 Deviations

We use the concept of deviation to describe how the measured values vary about the mean value. Again
there are lots of mathematical details, but the result is the definition of the sample standard deviation, s
where:
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The use of N−1 in the formula relates to the fact that the average value was determined using the data.
Be careful that this is the equation used by your calculator or spreadsheet. The sample standard deviation
gives the variation in the distribution of measured values, but it does not give the uncertainty in the best
value. Instead we would use the standard deviation of the mean, s̄ where:
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µ. (17)

However, we need to use caution with this formula since we cannot assume that by actually doing an infinite
number of measurements that we can obtain an infinitely small deviation. Other factors which can cause
variability between the measurements will eventually limit our precision.
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5.3 What does it all mean?

In our experiments, we will generate a data set {xi}N . From this we can extract the statistical results
for x̄, σx, and σx̄. We can now assume that any future measurements of x using the same system must be
distributed about the mean value with a characteristic width σx. In saying this, we can assume that any
single measurement using this same system must yield a value and uncertainty given by x± σx. However, if
we generate a data set {xi}N , then the uncertainty in the mean value is much more precisely known and is
given by x̄± σx̄.
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